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An undisturbed geostrophic density current flows along a vertical wall (the coast) with 
the free streamline (the front) located a t  a distance L from the wall which is comparable 
to the R,ossby radius of deformation. Finite amplitude perturbations with downstream 
wavelengths much larger than L are discussed, and it is shown that the slope of the 
front in the horizontal plane increases with time. Some perturbations tend to ‘break ’ 
seaward by developing large transverse velocities away from the coast. The temporal 
evolution of some perturbqtions is such as to completely ‘block ’ the upstream flow, 
but the subsequent behaviour is beyond the scope of the theory. We also discuss the 
propagation of the nose of the intrusion when a density current debouches from a 
coastal source and then flows along the coastal boundary. 

1. Introduction 
When fresh water from a small coastal source debouches into a large mass of salt 

water the buoyancy force causes lateral spreading, and the Coriolis force deflects the 
light water to the coast. Behind the nose of the intrusion (the ‘bore’) a geostrophic 
coastal current is established. The rate of propagation of the bore and the dynamics 
of nonlinear waves on the trailing geostrophic front are the subjects of this paper. 

Some of the effects to be discussed in a simplified theoretical model are illustrated 
and motivated by a qualitative experiment (see figure 1, plate 1 ) in which relatively light 
fluid debouches into a rotating channel. The source region (not shown) for the light 
fluid is in the corner of the rotating (5 s period) rectangular tank (13 cm wide x 100 em 
long) and consists of a thin (2 mm) walled vertical cylinder (2 cm diameter) with its 
open mouth located 0.8 cm below the parabolic free surface of the salt water whose 
initial mean depth was 11 cm. Dyed fresh water (0.25 x lop3 g ~ m - ~  less than the 
salt water) is fed into the bottom of the cylinder by a vertical capillary tube connected 
to an overhead feed, the flow rate being 0.96 cm3 s-l. The cylinder acts as a buffer 
region, and the light fluid then rises to the free surface and then spreads laterally. 
In  the second of the two experiments shown in figure 1, the external conditions are 
identical, except that  the source region has been modified by placing a thin vertical 
plate (5 cm long) parallel to the boundary, thereby providing a guiding channel for 
the water emerging from the top of the cylinder. The ‘edge effect ’ is somewhat different 
for the two geornetrics, but in either case the edge effect is confined to the source region, 
and the eddy entering on the left-hand side of frame (f) is not an edge effect. The top 
of the tank in both experiments is sealed by a cellophane cover; but similar waves 
have been seen in identical experiments with the cover removed and having significant 
evaporation effects. The noteworthy features of these qualitative experiments are: 
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FIQUEE 2. Perspective diagram of a realization of a zero absolute vorticity flow in a fluid con- 
tainer rotating with angular velocity &j. The reservoir is very deep compared to the height of 
the fluid relative to the level bottom of the channel. The cutaway shows the nose of the bore 
propagating down the dry channel with speed U ( 0 ) .  

the density current emerging from the source is deflected to the boundary, and a 
laminar intrusion appears first; perturbations with a horizontal scale larger than the 
width of the intrusion then appear on the trailing geostrophic front; as these amplify 
the propagation of the bore is arrested and the upstream flow is diverted normal to 
the coast and into a geostrophic eddy; the amplitudes of the latter are large compared 
to the width of the original current; a laminar boundary layer re-forms with a propa- 
gating bore, but new eddies are generated downstream - and so on. Most of the time 
a distinctive tilt of the amplifying wave is seen with a tilt of the crest in the opposite 
direction to the boundary current; the incipient frontal wave is probably a key element 
in the mechanism by which the incoming density current is mixed into the interior 
and by which a mean boundary current is formed. The reader is also referred to Nof 
(1978) in which a source sink experiment in a two-layer system is discussed, but with 
no density front. 

Since the flow from the source in this experiment is too complex to provide a starting 
point we will turn to the simpler class of uniform potential vorticity flows (Whitehead, 
Leetma & Knox 1974), a limiting form of which appears in figure 2. Here we have a 
very deep and horizontally extensive reservoir, rotating about a vertical axis and 
containing water which is initially at  rest. The barrier (not shown) connecting the 
reservoir to the long channel is then broken, whereupon water columns flow over the 
sill and into the channel. These columns conserve their potential vorticity and, since 
they are forced to decrease their vertical height by a large amount, it  follows that the 
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relative vorticity 5 is very nearly balanced by the Coriolis parameter f ,  i.e. 6 = - f .  
As the bore propagates down the channel a laminar geostrophic flow is established 
behind. Therefore the cross-stream height of the free surface must decrease from the 
right-hand wall to the left-hand wall, and separation from the latter will occur, if 
the width of the channel exceeds a certain multiple of the Rossby radiusof deformation. 
[The separation effect is especially pronounced if the left-hand wall is slightly curved 
(Shen 1978)l. After separation the bore and the trailing geostropbic front propagate 
along the right-hand wall as shown in figure 2. This paper, in contrast to those cited 
above, concentrates on the dynamics far downstream from the source region. The 
volume flux far upstream from the nose of the bore is therefore assumed to be known, 
as well as the corresponding transverse width of the geostrophic current. For a zero 
absolute vorticity flow these parameters determine the height of the fluid on the wall 
as well as all the other properties of the upstream flow. I n  addition to  the propagation 
speed of the nose of the bore, we want to study the properties of nonlinear waves 
superimposed on the geostrophically balanced flow upstream of the bore. We shall 
show that t,hese waves exhibit a tendency to ‘break’, and a tendency to ‘block’ the 
upstream flow. Although .these effects may be related to the dramatic instabilities 
which we observed (figure 1 ) and to the process by which the incoming density current 
is mixed into the interior, there is no obvious quantitative connexion with the theory 
because the potential vorticity in the experiment is not zero. Some suggestions for 
treating the finite potential vorticity front are given in the appendix, and it is hoped 
that better experiments will be made which will allow a comparison. 

The effects discussed herein may be relevant to the lateral mixing which occurs 
when fresh river water debouches into the ocean, and also when relatively cold water 
sinks (in wintertime) to the bottom of polar coastal regions (see, for example, Wadhams, 
Gill & Linden 1979). The abyssal western boundary currents, which are here alluded 
to, are of great importance in the theory of the thermocline, since these currents 
determine the mean temperature of the bottom of the ocean. We may also mention 
the classical meteorological-oceanographic problem of the ‘free’ front (i.e. no boun- 
daries), and some suggestions for treating this case are also given in the appendix. 

2. Long waves with zero absolute vorticity 
If 7 denotes the height of the free surface above the ‘level’ (geopotential) bottom 

of a container which rotates about the vertical axis K with angular velocity i f ,  then 
the hydrostatic equations for the relative horizontal velocity V can be written as 

3 + v . v y  = 0, 
at 

(2.la) 

(2.16) 

where 5 = K .  V x V is the relative vorticity. These equations also apply (asymptoti- 
cally) to a two layer fluid (figure 5a)  if the acceleration of gravity is reduced by the 
well-known densimetric factor. These equations imply that ( f +  <)/r is conserved 
following the motion, and therefore iff + 5 = 0 in the initial state then f + 5 = 0 a t  all 
subsequent times t .  This first integral may be used, together with the continuity 
equation (2.1 b )  and one of the two scalar equations in (2.1 a )  to solve the initial-value 
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problem. The three equations are written below in non-dimensional form, using the 
following scale transformation. 

Let h(x, y, t )  = q / H  be the non-dimensional height, where H is the height on the 
wall (y = 0) far upstream ( x  = - co) from the nose. The radius of deformation (9H) i f - l  
is taken as the scale for the non-dimensional transverse co-ordinate y, and L(x , t )  
denotes the corresponding non-dimensional displacement of the front ( h  = 0) from 
the wall. The following analysis will be restricted to disturbances whose downstream 
variation is small compared to  the cross-stream variation, and thus E-l(gH)ff-1 is 
used as the scale for the non-dimensional x co-ordinate, where 6 -+ 0 in the subsequent 
asymptotic expansion. Because f is the relative vorticity and f - l (gH)J  is the y scale, 
we take (gH) f  as the scale for the downstream velocity. In  order to make the down- 
stream acceleration of the same order as the downstream pressure gradient we take 
E - I f - 1  as the scale for non-dimensional time t .  Although the long-wave approximation 
requires the y component of velocity w to  be small compared to U ,  the relative con- 
tributions of (u, w )  in the continuity equation must be comparable, and therefore w is 
scaled by e(gH)*. The x-momentum equation, the continuity equation, and the 
vorticity invariant then assume the non-dimensional forms 

au a - = - - ( h  + $2 + *."v"), 
at ax 

ah auh awh -+-+- = 0, 
at ax ay 

au av = 1 
ay ax ' 

and the boundary conditions are 

w(x, 0, t )  = 0, h(x ,L(x ,  t ) , t )  = 0, (2.51, (2.6) 

w(x, L, t )  = d L / d t ,  (2.7) 

h(-a ,O, t )  = 1, w ( - c o , ~ , ~ )  = 0. (2.8) 

Equation (2.5) is the wall boundary condition, (2.6)-(2.7) are the  free streamline 
conditions, and (2.8) are the given upstream conditions. These are the classical 
shallow water (hydrostatic approximation) equations. 

A new level of approximation appears when we consider the case in which the 
downstream variations are small compared to the cross-stream variations, i.e. in the 

ah a(uh) a(wh) -+- +- = 0, at ax ay 

aU - _  - 1, 
aY 

(2.10) 

(2.11) 

together with (2.5)-(2.8). 
Note that the asymptotic version of the y component of (2.1 a)  gives a geostrophic 

balance between u and ahlay, and this balance is implicit in (2.9). To show this we 
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differentiate (2.9) with respect toy,  use (2.1 1) to get a/ax(ah/ay+ u )  = 0, and then use 
(2.8) to obtain the geostrophic equation 

for the downstream velocity. 

implies that h must be quadratic, and more explicitly we have 

= -ahlay (2.12) 

Equation (2.11) implies that u must be a linear function of y a t  all (r, t) ,  (2.12) 

4x3 y, t )  = V(x ,  t )  - (L.(x, t )  -Y) (2.13) 

h(x, y ,  t )  = U ( L  - y )  - $(L - y)2 (2.14) 

where the  constant of integration U is the velocity on the free streamline h(x, L,  t )  = 0. 
Two equations connecting ( U ,  L )  are obtained from (2.9)-(2.10) as follows. 

The height of the fluid on the wall is 

h(x, 0 ,  t )  = ( U  - +L) L,  
the cross-sectional area is 

irL2 ~3 
IoLhdy = --- 

2 6 '  
the volume transport i d  

and the wall velocity is 
u(x, 0) t )  = u- L. 

Since h(x, L, t )  = 0 the integration of the continuity equation (2.10) gives 

(3.15) 

(2.16) 

(2.17) 

( 2 . 1 8 ~ )  

(2.186) 

(2.19) 

where (2.16)-(2.17) have been used. The second equation connecting ( IT ,  L )  is obtained 
by substituting (2.13)-(2.14) in (2.9) to obtain 

(2.20) 

These new long-wave equations (2.19)-(2.30) are valid as long as the value of v [from 
(2.10)] is < e-l. Even if this is initially satisfied, we anticipate that v N d L / d t  will 
become large as time increases (wave steepening), and when this occurs one must 
return to the more primitive equations (2.2)-(2.4). An important simplification in 
the frontal dynamics has been achieved, however, in the foregoing separation of the 
transverse ( y )  co-ordinate. The resulting equations (2.19)-(2.20) are amenable to 
solution by the method of characteristics, but first we consider some special solutions. 

3. Special solutions 
We seek solutions of (2.19)-(2.20) having a time invariant functional relation 

between U ( z ,  t )  and L(s, t ) ;  i.e. let 
au 
at ax ax 
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and the more general significance of these will appear in 94. Substitution in (2.20)- 

( 3 . 1 ~ )  
(2.19) then yields aL aL (V- 1 )  - = - uu' - 

at ax 

- ( u - % + ~ ) %  L LU'  8 L  = ( u - $ J - L + L u ' ) - - .  aL 
ax 

By dividing and simplifying these we get 

or 

( 2 U - L )  2 u - L  
(U')2+ 2U' L-  L - O ,  I 

TJ' = - E L +  [ ( E L ) 2 + T 3  2 u - L  4 ,j 
L-u - L-u 

2 u  U ' =  1-  
L * [ L ( 2 U -  L)-p 

(3 . lb)  

as may be seen by rationalizing the last term. This differential equation may be reduced 
to quadratures by substituting 

(3.4) u .= *L, 

d L  
L 

(3.3) then becomes d$ f- = o .  
$- 1 + 2$/[1 f (2$- I )+]  

(3.5) 

R U and L satisfy (3.3) at some initial time, then (3.1 a ,  b )  imply that and U ,  L are 
independent of time at a point x = x(t) which moves with the (propagation) speed: 

ax UU' U 
dt 27'-1 1-1/77'. (3.6) 

In order to discuss the properties of these special solutions, some typical members of 
(3.3) [or (3.5)] are sketched in figure 3 along with auxiliary curves. The dashed curve 

u = l/L+QL (3.7) 

obtained by setting h = 1 in (2.15) corresponds to the given upstream state (x = - 03). 

This curve has been terminated on the line U = L where (2.18) vanishes, the reason 
being that upstream states having negative velocities (u( -a, 0, t )  < 0) have no 
present interest for us. But this convention does not preclude negative velocities down- 
stream from x = - 03. The line U = QL in figure 3 corresponds to vanishing height on 
the wall (cf. 2.15), and (meaningless) negative heights occur in the region U < QL. 

Consider the solution of (3.3) [or (3.5)] with the positive sign, the corresponding 
curves (figure 3) for which are designated by the 0 symbol. These solutions have 
U' = 0 at U = QL; and u' -+ - oc) at L +- 0 and U finite. Moreover, the function on 
the right-hand side of (3.3) has a zero at U / L  = 1, and it is positive for U < L. There- 
fore U' = 0 at both U = QL and U = L, with 0 < U' < 1 for U < L. We see that (3.6) 
is negative for U < L, implying that the local propagation velocity is upstream; 
whereas downstream propagation occurs for U > L. 

Consider next the solutions of (3.3) with the negative sign, or 

2$ 
(2$- l ) 4 -  1 

= 1+ 
2 u  U ' =  1-  

L-  [ L ( 2 U -  L)]+ 

L - = l - $ +  d* 2$ 
d L  (2+- 1 p -  1 (3.9) 
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I" 

FIGURE 3. The curved heavy lines are some typical solutions for the two ( f ) families of (3.3). 
These were constructed by drawing lines of constant slope (3.3) in figure 3 on lines of constant 
U I L .  Points like P ,  Q ,  R on the dashed curve represent allowed upstream states. The curve PS 
represents a 'bore' connected to the upstream state P. The curve RS represents a wedge con- 
neoted to the upstream state R. Upstream state points like &, which lie below the line U / L  = 6.2, 
can only be connected to wedges and not to bores. Points on the line U / L  = correspond to 
local regions of the density current for which the thickness of the fluid on the wall vanishes. 
The two sets ( f ) of curves are, moreover, the Riemann invariants from which the solution of 
any initial value problem may be constructed, as illustrated in figure 4. 

these being designated by the symbol 0 in figure 3. The right-hand side of (3.9) has 
one and only one zero, i.e. 

(3.10) 

$* = 6.2. (3.11) 

Therefore the solution of (3.8)-(3.9) which passes through a point ( U ,  L )  which lies 
above the line U = $*L must lie above that line for all L. Likewise the solution 
passing through a point lying below U = $* L must lie below that line for all L, and 
must never intersect the U axis. The latter curves have U' = 00 at U = L, are double 
valued, and have U' = 0 at U = $L. The former curves (those lying above U = $* L)  
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( a )  

t f  

FIGURE 4. Evolution of a blocking wave. (a)  Initial displacement of the front at some distance 
behind the bore. ( b )  The curve Q,R, gives the initial distribution of U ,  and this curve then 
evolves towards Q,R' tm time increases. ( c )  Evolution in physical space (z, t )  of the initial 
disturbance. A- is a characteristic passing through point R,  and A, is the steeper characteristic 
passing through Q,. 

have U' -+ (2U/L)4 + + for small L and finite U .  As L increases from zero, U 
increases and the propagation speed (3.6) increases. The propagation speed for curves 
lying below U = $* L is also positive since (3.8) is negative for U < L, and since (3.8) 
exceeds unity for U > L. The dynamical interpretation of these properties of the 
solution curves follows. 

4. Discussion of special solutions 
The different branches and parts of the foregoing solution curves correspond to 

different effects, and the solution corresponding to an intrusion (like figure 5a) of a 
density current is discussed first. 

(a)  Bores and wedges 

An intrusion must have L = 0 at its leading edge, and the corresponding U ( L )  curve 
in figure 3 must intersect the U axis. Far upstream from the nose ( L  = 0) we are given 
the uniform value of L (and U ) ,  as represented by some given point like P (figure 3), 
on the dashed line curve. Through this point pass two solution curves which intersect 
the U axis. The 0 solution (the curve PS)  was shown to have a local propagation 
speed which decreases with L, and the nose of this 'bore' therefore advances slower 
than the rear. An observer moving with the nose sees the front steepen with time, and 
also a convergence of the energy flux. There is also a @ solution (not drawn) passing 



Geostrophic fronts and bores 695 

through P and intersecting the U axis, but the propagation velocity for this ‘wedge’ 
intrusion increases towards the nose. An observer moving with the nose sees the 
wedge get thinner with time, and there is a divergent energy flux. 

A wedge intrusion should not be realizable over ‘long’ time intervals because 
frictional forces (not included in the present theory) will eventually become dominant 
a t  the leading edge, and slow it down. The ‘bore’, on the other hand, might evolve 
into a qualitatively similar realization even though it steepens with time. The neglected 
[0(e2)] inertial terms then become quantitatively important, the nose of the intrusion 
must be modified, and a bore of permanent’ shape may evolve. Although the precise 
nature of the structure of the nose after long time intervals cannot be determined at 
this stage, the distinction between ‘bores’ and ‘wedges’ seems to be sound. 

For upstream state points like Q (figure 3) which lie below the line U / L  = $* = 6.2, 
we have shown that the 0 solutions do not intersect the axis, and therefore bore 
solutions do not exist for upstream states satisfying U < kc.* L. From this and (3.7) 
it  follows that 

i 1 

is the maximum upstream width which will allow a bore to propagate. Wider boundary 
currents must somehow ‘adjust’ so that only a small portion (4.1) propagates down 
the coast, and the nature of this adjustment remains to be elucidated. 

The propagation speed of the nose of the bore can be computed as follows. Since 
U’(0)  = CQ, eq. (3.6) shows that the nose advances a t  a speed U ( 0 ) .  The latter is 
computed by integrating (3.9) from P, where L = L, is given and U = l / L p  + *Lp, 
to the point L = 0. The expression for the nose speed so obtained is as follows : 

The latter integral converges when L, is less than (4.1),  and becomes infinite for 
L, = I /  J5.7. In this limit U ( 0 )  = 0, and the nose of the bore remains stationary until 
it is ‘ over-run ’ by the trailing part of the front, at  which point the foregoing asymptotic 
theory fails. 

(b)  The quasi-geostrophic breaking wave 

Let us temporarily ignore the above mentioned problem of the long time behaviour 
of the nose, and turn our attention to the propagation of waves on an otherwise un- 
disturbed front which lies parallel to the coast in the interval - 00 < x < + CO. If the 
basic geostrophic current is unidirectional then the largest possible width will corre- 
spond to the point R(L = 4 2  = U )  in figure 3. Suppose that this basic state is per- 
turbed with the initial value (t = 0) of L(x,  t )  being L(x, 0) >, J 2 ,  and with U ( x ,  0) 
lying along the ‘special’ @ curve passing through R. The propagation speed for such 
a wave is negative [because U ( L )  lies below the U = L line], and increases in magni- 
tude as ( L -  J2 )  increases. Therefore the crest of the front (max L)  moves upstream 
with the greatest speed, and the front steepens on the upstream side of the wave. The 
transverse velocity d L / d t  on the free streamline may be computed with the help of 
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(3.1 a) ,  and thus we see that 
aL a~ u a~ 

v(x,L,t)=-+U-=-- 
at ax 1- ui ax (4-3) 

approaches plus infinity as the wave steepens. Note that the large velocities developed 
during the steepening phase are directed away from the rigid boundary, and contrast 
this with the non-rotating problem (Stoker 1957) where the gravity wave develops 
large velocities towards the rigid boundary. Thus the kinematical constraint on the 
breaking of large scale horizontal wave is less severe than the corresponding constraint 
in the classical wave breaking problem. When the x derivative of (2.14) is evaluated 
at y = L we get (ahlax), = UaL/ax, and therefore (4.3) may be written as 

v(x,  L, t )  = - (”) . 
i -  t7’ ax y - L  

Figure 3 shows that U‘ = 0 at point R, and therefore v z ahlax for small amplitude: 
J L -  J21 < 1. In this limit the wave in question is quasi-geostrophic with respect to 
the transverse velocity, as well as with respect to the longitudinal component (2.12). 

( c )  Blocking waves 

Let the initial amplitude of the wave discussed above be increased so that (max U, 
max L)  lies on the line U = &L in figure 3. Here we have a perturbation with such 
large negative wall velocities that the height of the fluid on the wall is initially zero, 
and the net transport (2.17) at the section in question ( L  = maxL) is also zero. The 
propagation speeds (3.6) at this section also vanish, and therefore the net transport 
is zero at all subsequent times! Thus the current is permanently ‘blocked ’ at max L, 
while the upstream half of the wave still propagates upstream and steepens as in 
example ( b ) .  We shall subsequently see how such blocking waves can arise from 
smaller finite amplitude disturbances of a ‘ non-special ’ kind. 

( d )  Other waves 

Consider once again a basic state with L = J2 = U (point R), and now introduce a 
perturbation in which ( U ,  L )  lie along a 0 curve in figure 3. Since u’ = 00 a t  R there 
are two possibilities. Either U - J 2  > 0 with L-J2  > 0, or else U -  J2 < 0 with 
L-  J2 > 0.  In either case we have shown that the propagation velocity is positive, 
but in the first case (3.6) increaseswith L whereas the opposite is true when U - 4 2  < 0. 
Therefore the wave steepens on the downstream side in the first case, and steepens on 
the upstream side in the second case. These waves are related to the classical Kelvin 
wave in a semi-infinite fluid of uniform depth? because in the limit of I U - 2/21 < 1 
the transverse velocities vanish. But for finite amplitude the transverse velocities 
increase in time, and there will be a great difference in the nature of the ‘breaking’ 
of the two types of waves. The second case breaks seawardwhereas the first case breaks 
towards the rigid coast. 

Although the nature of the breaking and blocking process in all of these cases is 
beyond the scope of the long wave theory [(2.19)-(2.20)], and the more primitive 

t Bennet (1973) (see also Smith 1972) has investigated finite amplitude Kelvin waves in a 
semi-infinite fluid (no ‘front’) of uniform potential vorticity, and has shown the tendency of 
these waves to steepen. 
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equations (2.2)-(2.4) must be investigated, it would seem almost certain that the 
evolution of such waves will have important effects on the entire density current, and 
its lateral mixing with the resting fluid on the seaward side. 

5. The initial-value problem 
Equations (2.19)-(2.20) may be solved by the method of characteristics. When 

(2.20) or au au aL -+U----=O 
at ax at 

is used to simplify (2.19), the latter may be written as 

( f)  E L au aL 
- ( V - L ) - + U - - + ( U - L )  u-- - = 0. 
2 ax at 

When this is added to the product of (5.1) with a multiplier a ( U ,  L )  we obtain 

where a and A( U ,  L )  are k c h  that 

aTJ + +L( U - L )  - ( U  - L )  ( U  - QL) 
a U - a  

A =  - 

The latter part of (5.4) gives a quadratic equation for a, whose two roots are 

2a* = L+ [L(2U-L)]+; 

the corresponding values of h are 
u-L 

h -  * - 1 T [L/(2U-L)]+' 

We note that both of these h values are positive if U > L, but 

At a point x = x ( t )  moving with speed dxldt = A, the rate of change of U(x, t ) ,  
L(x ,  t )  are dU/dt = aU/at + AaU/ax and d L / d t  = aL/at + haL/ax. Using these in (5.3) 
gives adU/dt + ( U  -a) dL/dt = 0 a t  a point moving with one of the characteristic 
speeds ( 5 . 6 ~ ) .  At such a point the functional relationship U = U ( L )  obtained by 
solving the differential equation 

a ( U , L ) d U + ( U - a ) d L =  0 

is time invariant. When (5.5) is used the differential equation for this Riemann 
invariant is dU 2 u  

- =  1 -  
d L  L * [L(2U--L)]+ 

which is identical to (3.3), i.e. the curves in figure 3 correspond to the Riemann 
invariants of the initial value problem. We shall now use the method of characteristics 
to show how the special waves in $ 5  4 ( b )  and 4 (c) evolve from a more general class of 
initial perturbations. 

Consider an initial value problem (figure 4) in which L = J2 = U at x = -00, in 
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which L increases downstream to its maximum value L,,,, and in which U also 
increases but less rapidly than L. Thus U < L and ( 5 . 6 b )  shows that the characteristics 
have opposing slopes. A t  the point Q, in the upstream region (figure 4) of the pertur- 
bation draw a A, characteristic starting from t = 0. At all later times the value of 
U ,  L on any such curve must lie on the U, invariant (figure 4 b )  which passes through 
the point Q,: ( 4 2 ,  J 2 ) .  Next consider a A- characteristic drawn (figure 4c) through the 
point R, having the maximum initial amplitude. This has negative slope and will 
intersect the previously mentioned A, characteristic as shown in figure 4 (c). The 
Riemann invariant for the A- curve is constructed by drawing a U- curve through the 
known point R, in figure 4 ( b ) .  A t  the time when the A, and A- characteristics intersect 
(at the point labelled R’ in figure 4c) the corresponding values of ( U ,  L )  must satisfy 
both the previously mentioned Riemann invariants. Consequently R‘ must be Iocated 
at  the intersection of the U- characteristic passing through R,  and the U, character- 
istics passing through &, in figure 4 ( b ) .  Thus we see that the initial state represented 
by the curve Q, R, in figure 4 ( b )  evolves into Q, R’, the latter being the special wave 
discussed in $4. After the Q4R‘ phase is reached the wave merely steepens on its 
upstream side while conserving L,,,, but the qualitative discussion given above 
shows that the final value of L,,, can exceed its initial value. If the initial Lmsxin 
figure 4 ( b )  is increased, then the final point R will lie on the U = 4L where h(x, 0, t )  = 0 
and blocking ( 5  4c) occurs. We conclude that total blocking can evolve from smaller 
perturbations. This effect as well as the seaward-breaking wave ( $ 4 b ,  d )  may, 
depending on the role of the short waves, lead to a pronounced ‘instability’ of the 
boundary current - such as those in figure 1. 

6. Conclusions 
Figure 5 (a) is a schematic diagram of a relatively light liquid flowing from a surface 

source into a deep and stationary fluid. Our results will be summarized in this context, 
rather than for the formally equivalent bottom current, because in a laboratory 
realization of the latter consideration must be given to the deviation of the bottom 
surface from a geopotential as well a.s to the Ekman friction. 

A bore will propagate along the wall with speed (4.2) provided the upstream width 
L, is less than a certain fraction of the radius of deformation (4 .1 ) .  This result pertains 
to the case of zero potential vorticity, and the effect of finite potential vorticity may 
be computed from the generalized theory outlined in the appendix. 

An arbitrary long wave bulge (figure 5 b )  behind the nose of the front evolves in 
time according to equations (2.19)-(2.20). The particular case shown in figure 5 ( c )  
corresponds to the wave discussed in 9 5 (see also $4b), with the ‘wiggly’ arrow indi- 
cating the amplification and upstream propagation of the front. Whereas this wave 
is stationary and geostrophic for infinitesimal amplitude, there is upstream propa- 
gation for finite amplitude. The seaward component of velocity thereby increases with 
time until its dimensional value becomes comparable to the downstream velocity, at 
which stage the long wave theory fails and equations (2.2)-(2.4) must be used. The 
backward-breaking wave (figure 5 d )  and the forward breaking wave (figure 5 e )  are 
the Kelvin-like waves discussed in $ 4 .  We expect that the modification of the mean 
flow will be significantly different for waves which break towards the rigid boundary 
and for those that break seaward. 
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FIQURE 5. (a) Surface density current emerging from a source. Straight arrows represent currents, 
and ‘wiggly ’ arrows are frontal pxopagation velocities. (b )  Propagating bore with perturbation 
in the rear. (c) Evolution of a backward-propagating wave. (d )  Forward-propagating wave with 
steepening in the rear. (a )  Forward-propagating wave with forward steepening. (f) Blocking 
wave with stationary crest and upstream propagation. 

The blocking wave (figure 5f) is a limiting case of ( c )  which occurs when the initial 
wave amplitude is sufficiently large (0 5). The amplitude then increases in time until 
the thickness on the wall vanishes a t  some cross-section. The total transport through 
this section vanishes a t  this, and all subsequent time. The upstream front then propa- 
gates upstream as the flow piles up (blocking). The downstream portion of the front 
also propagates upstream, and this accounts for the mass flow further downstream. 
But the downstream mass budget is clearly approaching a trauma, and a far reaching 
modification (‘instability’) of the entire boundary current, including the bore, is 
strongly suggested. Perhaps the propagation of the bore will be arrested, as the 
boundary current in the blocked region is diverted normal to the coast and a large 
eddy is formed. At a later stage the eddy might detach, allowing the boundary current 
and the nose of the front to re-form. A new bore could then propagate along the wall 
until a sufficiently large perturbation causes the whole process to recur, thereby giving 
rise to a (geostrophic) turbulent coastal current which mixes laterally into the adjacent 
sea by means of the eruptions and eddies mentioned above. Although this is a highly 
speculative picture of the post steepening phase, something like this appears to occur 
in our laboratory experiment (figure 1) .  
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Appendix. Remarks and suggestions 
(a )  Short wave dispersion. The question arises as to whether the steepening of the 

long waves ( 5  4) can be compensated by the dispersion of the short waves which are 
generated. To investigate this one must return to the more primitive equations r(2.2)- 
(2.4)] and solve these with 6 finite, but this nonlinear problem is difficult because the 
y co-ordinate can no longer be separated. Some insight into the dispersion may be 
obtained, however, by considering the behaviour of short injnitesimal amplitude 
waves on an undisturbed front which is parallel to the coast in the interval 

--co c x c +a. 

Let U( y )  be the undisturbed linear current; let z( y )  be the corresponding undisturbed 
height; let (u’, v’, h’) exp i ( x  - ct) be the perturbations, where c is the non-dimensional 
phase speed for non-dimensional wave number unity (the parameter E carries the 
dimensional value of the wavenumber). The linearization of the ‘primitive ’ equations 
(2 .2) - (  2.4) then gives 

(U-C)U’,= -h’, 

d 
(U-c)h’+zu‘-i - (V’E) = 0, 

dY 

the result of eliminating (v’, h’) is 
d -du’ - 
- h - - € W [ h  - (U - c)2] = 0. 
dY dY 

The boundary condition v’ = 0 at y = 0 implies 

du’( 0 )  

dY 
- = o  

and we require finite du’(L)/dy in order that v‘ be finite on the free streamline (z = 0) .  
When these two boundary conditions are used in the integration of (A 1 )  we obtain 

loL dy[E - (5 - c)2] u.‘ = 0. 

u; loL dy[E - (G - coy] = 0 

(A 3) 

A power series expansion in e2, 

may be used to solve the eigenfunction problem, and substitution in (A 1 )  gives 
du;/dy = 0 for the leading term. The leading term in (A 3) is then 

c = C,+C,€2+C4€4+ ..., u’ = u;(y)+€%;(y)+ ..., 

(A 4) 

which is a quadratic equation for co with coefficients that depend on the basic flow. 
These non-dispersive long waves are merely the small-amplitude solutions of (2.19)- 
(2.20). The next term c2 in the above expansion gives the first-order effect of dispersion. 
Perhaps a theory can be devised which incorporates this effect with the nonlinear 
effects in (2.19)-(2.20). 

( b )  Topographic effects on density currents. The question arises as to whether our 
long-wave theory can be generalized for the case of a current flowing along a bottom 
which slopes in the direction normal to the coast. If 7 represents the local height of 
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the fluid layer above the sloping bottom then a term [ - gV (bottom elevation)] must 
be added to the right-hand side of (2.1 a) .  This y directed force requires no alteration 
in the asymptotic equations (2.9)-(2.11), but (2.12) is modified to 

where M is the non-dimensional topographic height. Equation (2.14) must then be 
modified by adding a term M ( y )  - M ( L )  to the left-hand side. If (2.11) and (A 5 )  are 
satisfied then the expression 

will clearly have a vanishing y derivative. Therefore if (A 6) vanishes at any y ,  say 
y = L ( x ,  t ) ,  then (2.9) will be satisfied at  ally .  But substituting (2.13) and the modified 
(2.14) into (A 6), by evaluating it a t  y = L and by setting the result equal to zero we 
obtain one equation for L, U (involving M ( L ) ) .  The integrated continuity equation 
( 2 . 1 8 ~ )  provides the second relation, and thus we obtain the generalization of (2.19)- 
(2.20) for the case of a cross-stream topographic variation. Both systems are auton- 
omous second order equations, and there will be (almost certainly) wave breaking in 
this topographic problem. The quantitative results (e.g. the bore speed) will, however, 
be different. 

A qualitative change in the aforementioned structure of the nonlinear equation for 
long waves occurs, however, if there is a downstream variation M ( x )  (using the appro- 
priate scaling in non-dimensionalizing) in the bottom elevation. Although equations 
(2.12), (2.1 l) ,  (2.10) are unaltered, where h is again the height of the free surface above 
the bottom, the term - M’(x) must be added to the right-hand side of (2.9). This 
term must also be added to the right-hand side of (2.20), but (2.19) is unaltered. Thus 
we now have an inhomogeneous differential equation for L ( x ,  t ) ,  U .  Such an inhom- 
ogenous force - M’(x) will occur when a bottom density current flows radially on a 
plane which is perpendicular to the axis of rotation, and which is therefore inclined 
a t  a slope relative to the parabolic level surfaces. Such a bottom surface simulates the 
planetary ‘p-effect ’ on a sphere. 

(c )  Finite potential vorticity. The key step in the simplification of the frontal problem 
is the separation of the y variable, and the question arises as to whether a similar 
reduotion of the field problem can be achieved for less specialized flows. With no 
restriction placed on the potential vorticity, and with the same scaling for u, v, h etc. 
as was used in 5 2, we obtain the following long wave ( E  -+ 0) momentum and continuity 
equations : 

ah u =  -- 
aY’ 

ah ahu ahv at+-+- ax ay = 0, 

these being the generalization of (2.9)-(2.11). The y derivative of (A 7 )  yields 
a a a d 1 dh 
at aY ax at h dt’ 

0 = - (-u,)+- [ ( l -u , ) v ]+-  [ U ( l - U , ) ]  = - ( l - u u ) - ( l - u  ) -  - 

or 
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which is the asymptotic version of the law of conservation of potential vorticity. 
Conversely, if (A 10) is satisfied along with (A 9) and (A 8)) then the y derivative of 
the left-hand side of (A 7) will vanish. Therefore equation (A 7) will hold at all y 
provided e- at (I -$) v+& (h+:) = o a t  one value ofy. 

For a current with uniform potential vorticity, 11% or 

1+h,, = 1 
h 2’ 

equations (A 10) (and (A 8)) are satisfied a t  all time. Therefore it only remains 
to choose the constants of integration of (A 12) such that (A 11) is satisfied along 
with the :continuity equation. If there is a free streamline h ( x , L ( r , t ) , t )  = 0 a t  a 
distance L from a vertical wall ( y  = 0), then we write the solution of (A 12) as 

+ H i U ( x ,  t )  sinh - L-Y , 
Hi 

We now use these to evaluate (A 11) a t  y = L, a t  which point [l - u,In ~ ,, = 0 and the 
term containing v in (A 11) vanishes. The result is identical to (2.20). The second 
equation connecting ( U ,  L )  comes from substituting (A 13) in the integrated con- 
tinuity equation (2. 18b) ,  and this generalization of the differential equation will have 
hyperbolic functions of L as coefficients. Although the solutions of this system have 
not been investigated, it is quite likely that such qualitative effects as bores, breaking, 
and blocking will also appear for this jinite potential vorticity boundary current. 

The important problem of a free (no walls) frontal wave can be studied by using 
models in which the potential vorticity is piecewise uniform. Consider, for example, 
two semi-infinite fluids of the same density, separated by a vertical diecontinuity 
surface a t  y = L ( x ,  t ) .  The thicker fluid in the region L > y > - 00 has a non-dimen- 
sional potential vorticity equal to unity, and the fluid in L < y < co has the uniform 
potential vorticity 1 1 2  > 1. The corresponding solutions of (A 12) which are con- 
tinuous a t  y = L and which have u ( x ,  k 00, t )  = 0 are 

We also require v(x ,  & co, t )  = 0, and consequently (A 11) is automatically satisfied. 
The two equations for determining L ( x ,  t ) ,  A ( x ,  t )  then come from the continuity 
equation and the kinematical conditions: v(L*) = aL/at + u ( x ,  L*, t )  aL/ax on either 
side (L*) of the discontinuity surface. These equations are obtained by substituting 

8 Ifrw 
(A 14) and (A 8) in ILL h d y  + $ Ilkrn uhdy  = 0. 

The undisturbed state (aL/ax = 0) of this model may be viewed as the limit of an 
equilibrium geostrophic shear flow in which the potential vorticity increases mono- 
tonically from 1 to l/%. This equilibrium is probably stable to small perturbations, 
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according to the quasi-geostrophic Rayleigh inflexion theorem (Stern 1975, p. 69)) 
and therefore (A 15)) (A 16) are probably hyperbolic. The mathematical and physical 
properties will change most significantly, however, if we have a third region with a 
uniform potential vorticity 1/H, lying between the other two regions. There will be 
an extremum of undisturbed potential vorticity if 1/H, either exceeds f /2  or is 
less than unity; and consequently there will probably be an energy source for amplify- 
ing infinitesimal perturbations. The waves in such a system may therefore be expected 
to exhibit ‘stronger’ effects on the current than occurs in the zero absolute vorticity 
model. Studies of the variable potential vorticity model might be directed towards 
waves observed on the Gulf Stream front, and perhaps the dramatic phenomenon of 
ring formation (Fuglister & Worthington 1951) might be interpretable as an unstable 
blocking wave. 
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FIGURE 1, Dyed fresh water emerging from a small circular source located (but not seen) in the 
lower left-hand corner of the rotating rectangular tank, the top of which is covered (see text). 
Experiment 1 : ( a )  nose of intrusion is 20 cm downstream from source and time after starting 
is 1 min 19 s ;  ( b )  after 2 min, amplifying wave behind nose is seen; ( c )  after 9 rnin 16 s ,  showing 
evolved eruptions of the coastal jet together with smaller incipient waves. Experiment 2:  ( d )  
after 2 min 26 s with identical conditions except for source geometry (see text) ; ( e )  after 3 min 
56 s, note that the large-amplitude wave is forming a detached vortex: ( f )  after 6 min 29 s, 
a big eddy has propagated downstream in the left-hand side of the picture and a new cusped 
wave is seen forming on the laminar coastal current in this region. 
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